If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2y^2+4y=0
a = -2; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-2)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-2}=\frac{-8}{-4} =+2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-2}=\frac{0}{-4} =0 $
| H=-16t2+60t | | 6x•8=64 | | 1/(x^2)=1.96 | | 285=8(6-6m)-3 | | 2x-5=5-x | | -2k9=3k-1 | | 4y=2y^2+6 | | -2(4x-3)-5x+3=-3 | | 64-5x=55-2x | | F(x)=-2x^2+54x-280 | | q=2q+3 | | -0.48k+0.2=-0.5k | | 3x-71=169 | | 5+9=x-23 | | 9x-35=4x+30 | | 2x+12=–5 | | 5x+3-4x+1=4+x+0 | | 4+6k=4k= | | x+21=-41 | | 144=k/(3960)² | | -5(3t-3)+3t=7t-9 | | 8(3x+9)=20x+17 | | N+2x3=9 | | RS=6y+5,ST=5y+7,RT=78 | | 7x-10=12x | | 5^2x+5^1+x-6=0 | | 6.31h−4.57=2.93h+2.19 | | 61b+143=74b | | 13x-18=7x-2 | | 9z-10=8 | | 7x-(2x+5)=6(2+3x)-31 | | 5x-32=3x-4 |